Sex chromosomes
Whereas the non-sex chromosomes (autosomes) can partner up and swap DNA over their entire lengths, the sex chromosomes, X and Y, in mammals only swap DNA on the tips. We study this process and its consequences.
Pseudoautosomal regions
Genetic diversity across the pseudoautosomal region in humans does not support a strict boundary between the region that recombines and the region that does not recombine. Read more here.
X-specific and Y-specific evolution
There is a set of genes on the sex chromosomes of eutherian mammals (e.g., human, mouse, dog - basically all mammals except marsupials and monotremes) that are on the non-sex chromosomes (autosomes) in marsupials. We can compare the genomic and expression evolution of the X- and Y-linked gametologs with their homologs on the autosomes to learn how X- and Y-linkage affect molecular evolution. With Kateryna Makova.
Read more here: Evolution and survival on eutherian sex chromosomes
Evolutionary Strata
In species with heteromorphic sex chromosomes, inversions, or other events, often accumulate to suppress recombination so that sexually antagonistic alleles won't adversely affect the opposite sex. We aim to understand how these recombination suppression events occur, and what their genomic signatures are. With Ravi Shanker Pandey and Rajeev Azad. Read more here.
Gene Loss on Human Y
The human X and Y chromosomes evolved from a pair of homologous autosomes, but today the X has more than ten times the gene content of the Y. Which genes were lost, and how does the loss of functional genes on the Y affect the evolution of the human X? Are genes with some functions or expression patterns more likely to be retained on the Y? With Kateryna Makova.
Read more here: Gene Survival and Death on the Human Y Chromosome